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Abstract. The Hubbard model for the square planar lattice in the limit t /U < 1 is discussed. 
The ground state is chosen to be the product of the Hubbard model’s exact solutions for 
four-site blocks. One-particle excitations appear to be Fermi particles with spin 4. Their 
effective mass near the bottom of the band coincides with the effective mass of excitations 
in the paramagnetic state in the ‘Hubbard-I’ approximation. However, minima of the 
spectrum are situated at other points in the Brillouin zone. The possibility of the binding of 
two excitations into singlet pairwith charge 2e is demonstrated. Cohesive energy iscalculated 
to be equal to 0 . 1 ~  The superfluid state of the Bose gas of such pairs is assumed to be 
connected with high-T, superconductivity. 

1. Introduction 

The Hubbard model [l] for the square planar lattice with resonating valence bonds 
(RVBS) [2] has been recently treated in connection with the high-T, superconductivity 
problem. In particular, the possibility of hole pairing has been discussed. For this 
purpose it is important to construct the RVB ground state W,, as well as to determine the 
elementary excitation spectrum. 

The RVB state Ygr is usually constructed on the basis of the two-electron nearest- 
neighbour singlet (Do [3-6]:  

(Do = 4[(a:b: - b:a:) - 2( t /q (a :b :  - b:a:)] 

where t and Uare standard model parameters, and a: and b: create an electron on the 
ith site with +i and -4 spin projections, respectively. We shall construct Yg, originating 
from the singlet ground state /4O) of a square four-site block with four electrons. In 
comparison with (Do (equation (1)) the singlet state 14’) is more appropriate for square 
symmetry of the problem and from the very beginning takes better account of short- 
range order. In the following, we determine the variational energy value for the ground 
RvB-like state on the two-dimensional square lattice with one electron per site: LY = 
t /U 4 1. We also calculate the elementary one-particle excitation spectrum. In our block 
approach, excitations are naturally described as small magnetic polarons-the lowest- 
energy states of the block with three electrons. We demonstrate that it may be ener- 
getically favourable for two such excitations to be bound into a localised pair, i.e. a 
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bipolaron. It should be emphasised that our results have a variational character; the 
approximations involved are discussed at the end of each section. We shall also discuss 
the special case of the RVB state for a square ladder, which was recently considered in 
171. 

2. Variational ground-state function 

The Hubbard Hamiltonian has the form 

As usual, t and U are the hopping integral and the on-site Coulomb repulsion, and (ij) 
denote nearest neighbours. For construction of the ground state let us now divide the 
plane into square four-site blocks and rewrite the Hamiltonian in block form: 

where hn is the Hamiltonian of the block n, inm is the inter-block hopping operator. (nm) 
are the nearest-neighbour blocks, Xtfi is Hubbard's operator [1] transferring the block 
II from state p to state A ,  1 S )  is the eigenstate of the four-site block with S electrons (s = 
0-8) and energy .E$, i is the set of quantum numbers and ti$'sp are the corresponding 
hopping matrix elements. Transformation from (2) to (3) is exact because (3) is simply 
the representation of Hamiltonian (2) in the basis of the block operators 

It is at first necessary to find eigenstates IS) of a block containing S electrons. It is 
appropriate to choose indexes i to be the eigenvalues q ,  U of the block's Hamiltonian 
symmetry operators: e, indicates rotation by x/2,  and by reflection by the Oy axis. The 
ground state I4O) for the block with four electrons (one electron per site) appears to be 
a singlet. It has q = - 1 , U = + 1 and energy E :  = - 12at[ 1 + O(a2)] .  The expression for 
its wavefunction is presented in the Appendix. Let us note that the first excited state I4l) 
has spin equal to unity and 

We now introduce a variational wavefunction of the ground state of the system with 
4N electrons ( N  is the number of blocks). It is constructed on the base of 14') and all 
states I3I), 15') with three and five electrons in a block: 

= -8at .  

where 6; are variational parameters, andgis the nearest-neighbour vector for the block 
lattice. The zero approximation Yo is built from independent blocks with four electrons 
in the singlet state 14O) with lowest energy E ! .  Straightforward calculations of (Y 1 HI Y)/ 
(Y I Y) with the trial function ( 4 )  involving all states 1 3 L ) ,  15') lead to a variational value 
of energy per block, i.e. E O  = + E , ,  E ,  = -4at, E' = -16at + O ( a 3 t ) ;  this is the same 
value of energy per site, i.e. eo = .s0/4 = -4at  = -4 t2 /U,  as for the classical Nee1 
state (eN). However, the state (4) has the following typical RVB properties: magnetic 
sublattices are absent, the mean spin projection on each site is zero, while the anti- 
ferromagnetic correiators are non-zero. 
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For a quasi-one-dimensional square ladder the same calculation yields eo = - 3 . 5 ~  
for the energy per site, in contrast with e i  = -3at. For a one-dimensional chain (two- 
site block), eo = -2.5at [8] and lies much closer to exact solution eexact = - 2 . 7 7 ~ ~  [9] 
than to eN = -2at. 

The function Yg, ( 4 )  accounts for correlation mainly inside the 2 x 2 block. If Ygr 
has the form ( 4 ) ,  the energy eo in the linear approximation in a is not lowered because 
of the complicated nature of state 14), i.e. by admixing other states 14'). In order to 
account for long-range correlation, one must enlarge the block size in ( 4 ) ,  dividing the 
plane into blocks of 16 sites (compare [S I ) .  It is difficult to diagonalise the Hamiltonian 
of such a block, but we may construct its states approximately. The states of the 4 X 4 
block may be considered as non-factorisable combinations which include products of 
the states of four 2 x 2 blocks. Taking into consideration hops between them (states 
115)' and I17')), we obtain in the simplest case e = -4.06at for the energy per site. An 
analogous complication for the quasi-one-dimensional square ladder leads to an energy 
e = -3.56~1~. 

Note that the variational estimate of energye = -3.73atfor asquare ladder obtained 
in [7] is lower. The trial function in [7] is a superposition of different bonds ( 1 )  connecting 
pairs of nearest-neighbour sites and it accounts for correlation on the scale of several 
blocks better than function ( 4 )  does. Nevertheless, the trial function in [7] is essentially 
quasi-one-dimensional and is difficult to generalise for the plane case; this function 
should also not be used in considering one-particle excitation. 

The block structure of trial function ( 4 )  allows us to take better account of correlation, 
but at the same time the block structure is the drawback of function ( 4 ) ,  because it leads 
to an artificial change in the lattice period (which doubles in the present case). 

3. One-particle excitations 

Let us consider one-particle hole-type excitations above ground state (4) .  One must use 
block states 13') with three electrons in a block to construct wavefunctions of such 
an excitation (we shall classify these states, as all other block states, by the block's 
Hamiltonian symmetry group representation). Every state 13') is characterised, besides 
the symmetry indexes q ,  U ,  by the value of energy E :  and spin of the block in this state. 
The ground state 13') has a spin I (i.e. it is a quartet) and energy E! = -2t + O(mc); its 
value of q = U = - 1. The next four states 13 '9  are transformed by the two-dimensional 
representation C4 13 '9  = -U I 3-'+'), U = 5 1. The spin is 1 (two degenerate doublets), 
and the energy E ;  = - f i t  + O(at ) .  The wavefunctions of these states are presented in 
the Appendix. 

The state 13') is in fact an immovable magnetic polaron, restricted by the block sizes. 
Let us take into consideration possible motion of polaron, which may lead to energy 
lowering. Then, in the framework of the ground state involved, the trial function of 
hole-type excitation is as follows: 

where n is the block's vector, and the quasi-momentum p lies in the reduced Brillouin 
zone. 

The spectrum of states (5) is defined by the matrix elements (40,+,3; Ifi14:3i,+,). It 
is easy to show that these matrix elements containing states 13*) are equal to zero, 
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because the state 13') has spin, equal to 4. That is why the energy of the state I@ is 
independent of the momentum and is equal to -2t + O(at). The spectrum cor- 
responding to states built from 1 ,,,") is equal to 

&,(P) = &; + E 3  

y = ((40,+,3~9"Ifi140,3~;",) = 0.125t[l + 2 6 a +  O ( a 2 ) ]  

where a is the lattice constant. Thus the hole in the state with the lowest self-energy 13') 
is immovable, and the energy of the state 1 is lower than the energy value of 13O), 
because of motion through the crystal. The hole in the state I has the lowest energy 
E !  = - ( f i t  + 4 y )  + O(at) = -2.23t and band width 8y = t. Note that, unlike the case 
of RVB, motion of the holes in the NCel state is difficult [lo]. The effective mass of the 
hole 13u,u) near the bottom of the band is l/8ya2. It coincides with the 'Hubbard-I' 
approximation. The hole band (6) is degenerate in U ,  because the representation of the 
I transformation is two-dimensional. In the following this feature appears to be 
essential when considering the bound states of two holes. 

The spectrum of electron excitations (five electrons in a block) can be found in a 
similar way. This calculation is simplified by the electron-hole symmetry of the problem 
and leads to the following expression for the gap in the one-particle excitation spectrum: 
A = U - 4.46t. It should be noted that Hubbard's scheme for Green function decoupling 
in the paramagnetic ground state yields A = U - 4t, and for the Nee1 state A -- U - 
t2/U. The corresponding gap values in the one-dimensional case are U - 3.27t (present 
approach), U - 2t (decoupling) and approximately U - t2/U (the Nee1 state). Rigorous 
solution, which is known in one dimension only, gives A = U - 4t [9]. 

Note the following restrictions of the variational deduction of spectrum (6). 

(i) The magnetic polaron size is restricted by the 2 X 2 block. 
(ii) The wavefunction (5) does not account for the hybridisation of state 13"3") with 

higher states I 3i). Such hybridisation could take place because of the inter-block hopping 
part of the Hamiltonian. 

(iii) Spectrum (6) is sensitive to the specific form of the ground state Ygr. It can be 
seen from (6) that the kinetic energy y directly contains block states from Ygr. 

Nevertheless, we consider, that the spectrum of excitations above the RvB-like 
ground state near the bottom of the zone is described sufficiently well by equation (6), 
and this expression is dramatically different from the spectrum in the tight-binding or 
'Hubbard-I' approximation. 

Eg = -2yu[cos(PX2a) - cos(pY2a)] - e4 
(6) 

4. Two-particle excitation spectrum 

Let us now consider the case of two holes in the system. We shall describe the holes 
localised in different blocks by the states I3"3"), which were found earlier. One must also 
consider the situation of two holes in one block, involving block states 12) with two 
electrons, i.e. with two holes. 

State 12O) with the lowest energy E ;  = -2V% is a singlet; is has q = U = +l. It is 
discussed in the Appendix. In fact, state 12) is a bipolaron, in the same sense as 13) is a 
polaron. It is noteworthy that the first excited state 12l) has the energy E :  = -2t. 

The effective interaction of two neighbouring holes is determined by their hopping 
into one block 13,) 1 3n+g + 14,) 1 2 n + g )  and by the inverse process. 2.5; < E! + E: and so, 
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from the viewpoint of the block’s self-energies, the interaction of holes has a repulsive 
character. However, it will be seen in the following that consideration of the dynamical 
processes, i.e. the matrix elements (2,+,4,1 AI 3,3,+,), may lead to the attraction of two 
holes. The symmetry of states /2O), 14O) is such that this matrix element is non-zero only 
in the case when states 13,) and I3,+,) have opposite spin projections oand equal parities 
U. Simple but cumbrous calculation yields z = (20,+,40, IAl3;,“3;;T,”) = 0.197t. 

We shall consider the problem of two holes in the system against a background of 
Ygr (equation ( 4 ) ) .  When describing holes, we shall restrict ourselves to the states with 
lowest energy, i.e. 12O), 13’) ( j  = U ,  a). Then the Hamiltonian in block projection 
Hubbard operators is rewritten in the form 

S, accounts for the fact that matrix elements with hops z along the Ox and Oy axes have 
different signs. 

The Hamiltonian ( 7 )  describes the self-energies of polarons and the bipolaron, free 
motion of polarons (partly by the matrix element y from (6)) and the formation of the 
bipolaron. The Hubbard operators on each block are connected by the constraint 

The spectrum of the system is determined by the poles of the retarded Green 
x: + zjxg + x ; 2  = 1 .  

functions 

In the equations of motion for these Green functions we shall omit commutators in 
the right-hand side, which are unimportant for spectrum determination: 

z = U + is .  

These equations are deduced as a result of the simplest decoupling of ‘Hubbard-I’ 
type. We ignored states with more than two holes in the system and assumed that 
(X:) = 1 .  The first of equations (9) describes the break-up of the bipolaron into two 
polarons in neighbouring blocks. The second equation corresponds to the inverse process 
and to the free motion of polarons. System (9) is analogous to the system of equations 
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appearing in the problem of the bound state of two spin waves. It can be solved exactly 
if one makes a Fourier transformation: 

( z  - e2)F4 = z PiGY 
k,  v 

Pz =E[1 +exp(iq.g)]exp(-ik-g). 
g 

q is the total momentum of two polarons. The solution of system (10) leads to the 
following equation, which determines the spectrum z = w(q) :  

0 U +  (1 - O ) w  = wql  

0 = b(y / z )2  U = E 2  - 2E3 
-1 

wq = [ w + io - E(: + k )  - E ( :  - k ) ]  

~ ( k )  = 2y[cos(kX2a) - cos(kY2a)]. 

Here the spectrum (11) is measured from the centre of the zone of the two holes of 
energy 2 ~ ~ .  

One type of solution of equation (11) describes the free motion of two particles with 
total momentum q and the lowest energy -87. However, we are interested in the solution 
corresponding to the stable bound state of two holes (up < -8y) .  Analysis of equation 
(11) shows that such solutions appear when the following inequality between the energy 
parameters of the Hamiltonian is fulfilled: 

8 y ( 0 - '  - 1) > U. (12) 

(8y  in the left-hand side is replaced by 4y in the case of a square ladder.) 
This condition is true for the parameters y = 0.129, 0 = 0.26 and U = 0.64 of the 

problem obtained earlier. The bottom of the zone of bound states is at q = 0. Equation 
(11) with these parameters yields for the gap A = -8y - wqz0 the value A = 0 . 1 ~  It is 
close to the gap obtained in [ll] by means of a variational treatment. When A 8z, the 
effective mass m is 2mo, where mo is the mass of one hole. An analogous consideration 
for one chain based on two-site blocks does not lead to the bound state because condition 
(12) is violated. 

Thus, in the framework of the approximations involved, we are led to the conclusion 
that two independent holes on a plane are energetically favoured to be bound into a 
singlet pair with charge 2e. This pair is the state 12') with a coherent admixture of two 
states I3","). 

The results of this section are obtained with the following approximations: 

(i) the approximations noted at the end of Q 4; 
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(ii) on the assumption that it is enough to consider only the ground state 12O) to 

(iii) by considering only two holes, which corresponds to the case of a low hole 
describe the bipolaron; 

concentration. 

5. Conclusion 

To summarise, we have constructed a simple RvB-like state on the base of square blocks, 
found the one-particle elementary excitation spectrum and shown the possibility of 
binding for two holes in the framework of the planar Hubbard model. We should 
emphasise that our RVB approach contains reformulation of the one-site Hamiltonian 
( 2 )  to the block form (3) .  In such an approach a hole is considered as a magnetic polaron 
of size equal to the block size. Two holes in the system may correspond either to two 
polarons (holes in different blocks) or to a bipolaron (holes in one block). In this case 
the block Hamiltonian is equivalent to the Hubbard Hamiltonian with on-site (where 
the new ‘site’ is the block) repulsion, i.e. U = - 2c3 > 0 ,  which is of the order of 
hopping t. Another difference from the usual Hubbard Hamiltonian is that the matrix 
element z of hole hopping to the block containing another hole appears to be larger than 
the matrix element y of hopping to the block without holes. This dynamical mechanism 
may be responsible for pair formation. 

Our method has a variational character. Only the lowest-energy states of polarons 
and the bipolaron were considered when calculating the excitation spectrum. So the 
conclusion that it is energetically favourable for two holes to be bound into a pair in the 
limit t 6 U is obviously inconclusive. 

At low temperatures, the Bose gas of such pairs undergoes superfluid transmission, 
which corresponds to the possibility of superconductivity in the model discussed. 

Let us evaluate the lowest value of the parameter a = t /U when one can neglect the 
formation of a ‘ferromagnetic bag’ [ 12,131, For this purpose we compare at fixed a the 
energy of a RVB state with one hole (the minimal value - (dj + 0.5)t was formerly 
obtained for this energy) and the energy E ~ ( N )  of the hole localised in the ferromagnetic 
region containing N sites. The energies E ~ ( N )  for N = 1.4, 8 and x are equal to 0, 
-24 -2.62t and -4t, respectively. If we take into account that for each site in the 
ferromagnetic region one has energy deficit 4at relative to the RVB state, we easily 
conclude that the RVB state is stable at least when a > 0.025. Thus, there is a sufficiently 
large a range where the involved approximation a! 6 1 holds. 

Appendix 

In the following, some states of the four-site block discussed in the text are presented. 
a: and b: create an electron on the ith site (i = 1 , 2 , 3 , 4 ,  clockwise from the higher 

left site) with a and 4 spin projections. e, is a rotation by n / 2  (change in indexes 1 + 2,  
2+ 3 ,  3 4 -  4,4+ 1).  ay is a reflection by the Oy axis ( 1  @2, 3 234). 10) is the vacuum 
state. 

The lowest energy four-electron state I4O) is 
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v 1 =  -fi v 2  = 1 v 3  = -6a + O ( a 3 )  v 4  = 6a2 + O(a3) .  

The three-electron ground state 13O) is a quartet. The next four states I3",") are two 
degenerate doublets. In the following, only states with spin projection -4 are given. 

13') = ~ ~ ( 5 1  JhL-) + E 2  lh?) + E 3  Ih!-) + E 4  Iht)) 
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